

Welcome to SimPrily’s documentation!

Contents:

	Introduction

	Install and Environment Set up
	Container
	Docker

	Singularity

	Virtual environment
	Linux OS

	Virtual Machine for non-Linux

	Local installation

	Usage
	How to run with a Container
	Docker

	Singularity

	Required Input

	Optional Input

	Additional information on input arguments
	ID

	output_dir

	param_file.txt

	model_file.csv

	High Throughput Computing
	Open Science Grid
	Test with interactive Singularity container

	Submit a Pegasus workflow

	Monitoring and Debugging

	How the Pegasus workflow works

	Recommendations for other HTC workflows

	Calculating summary statistics on real data
	Data format

	Usage

	Tutorial with Docker
	1. Define your simulation

	2. Create input files

	3. Perform test simulation
	a. Pull Docker image

	b. Run SimPrily

	4. Perform HTC simulations

	For Developers
	Containers
	Docker

	Singularity

	Testing

	Creating Documentation
	Resources

	Other Notes

Indices and tables

	Index

	Module Index

	Search Page

Introduction

SimPrily runs genome simulations with user defined parameters or parameters randomly generated by priors and computes genomic statistics on the simulation output.

	Run genome simulation with model defined by prior distributions of parameters and demographic model structure.

	Take into account SNP array ascertainment bias by creating pseudo array based on priors of number of samples of discovery populations and allele frequency cut-off.

	Calculate genomic summary statistics on simulated genomes and pseudo arrays.

This is ideal for use with Approximate Bayesian Computation on whole genome or SNP array data.

Uses c++ programs macs and GERMLINE. For more information on these programs, see:
https://github.com/gchen98/macs
https://github.com/sgusev/GERMLINE

Install and Environment Set up

	Python 2.7.6, 2.7.11, or 2.7.13 is required to run the code, with the requirements installed from requirements.txt.
Environments for Python 3 will soon be available.

	We highly recommend running SimPrily with the provided Docker, Singularity, or virtual environment.

Container

Docker

A Docker Image built with Python 2.7.13, the requirements, and the SimPrily code can be found on Docker Hub
https://hub.docker.com/r/agladstein/simprily/

cd to the directory you want to work in and then pull the Docker image.
To pull the Docker container:

docker pull agladstein/simprily

Singularity

The Docker image can be pulled as a Singularity container.

To pull the Singularity container:

singularity pull docker://agladstein/simprily

Open Science Grid Connect

A prebuilt Singularity Image from the Docker Image is used for the Open Science Grid workflow.
The Singularity Image on OSG Connect is available from /cvmfs/singularity.opensciencegrid.org/agladstein/simprily\:latest.

Virtual environment

Linux OS

cd to the directory you want to work in and then download the repository,

git clone https://github.com/agladstein/SimPrily.git

Install the virtual environment and install the requirements.

./setup/setup_env_2.7.sh

If you get an error during pip-sync try rebooting the system.

Virtual Machine for non-Linux

If you are running on a non-Linux OS, we recommend using the virtual machine, Vagrant (can be used on Mac or PC). In order to run Vagrant, you will also need VirtualBox.

Download Vagrant from https://www.vagrantup.com/downloads.html

Download VirtualBox from https://www.virtualbox.org/

cd to the directory you want to work in and then download the repository,

git clone https://github.com/agladstein/SimPrily.git

Start Vagrant, ssh into Vagrant, cd to SimPrily directory.

vagrant up
vagrant ssh
cd /vagrant

Install the virtual environment and install the requirements.

./setup/setup_env_vbox_2.7.sh

Local installation

We do not recommend this method

cd to the directory you want to work in and then download the repository,

git clone https://github.com/agladstein/SimPrily.git

If the above options do not work, the correct version of Python can also be installed locally:

cd mkdir python_prebuild
wget https://www.python.org/ftp/python/2.7.6/Python-2.7.6.tgz
mkdir python
tar -zxvf Python-2.7.6.tgz
cd Python-2.7.6
./configure --prefix=$(pwd)/../python
make
make install
cd ..
export PATH=$(pwd)/python/bin:$PATH
wget https://bootstrap.pypa.io/get-pip.py
python get-pip.py
pip install -r requirements.txt
python simprily.py --help

Usage

simprily.py takes 4 required arguments and 2 optional arguments, and help, verbose, and profile options.

python simprily.py [-h] -p PARAM -m MODEL -i ID -o OUT [-g MAP] [-a ARRAY] [-v] [--profile]

For quick help:

python simprily.py --help

e.g. One simulation (with pseudo array and genetic map):

python simprily.py -p examples/eg1/param_file_eg1_asc.txt -m examples/eg1/model_file_eg1_asc.csv -g genetic_map_b37/genetic_map_GRCh37_chr1.txt.macshs -a array_template/ill_650_test.bed -i 1 -o output_dir -v

e.g. One simulation (genetic map, no pseudo array):

python simprily.py -p examples/eg1/param_file_eg1.txt -m examples/eg1/model_file_eg1.csv -g genetic_map_b37/genetic_map_GRCh37_chr1.txt.macshs -i 1 -o output_dir -v

How to run with a Container

Docker

docker run -t -i --mount type=bind,src="$(pwd)",dst=/app agladstein/simprily python /app/simprily.py [-h] -p PARAM -m MODEL -i ID -o OUT [-g MAP] [-a ARRAY] [-v] [--profile]

Singularity

singularity exec simprily.simg python /app/simprily.py [-h] -p PARAM -m MODEL -i ID -o OUT [-g MAP] [-a ARRAY] [-v] [--profile]

Required Input

	-p PARAM

	The location of the parameter file

	-m MODEL

	The location of the model file

	-i ID

	The unique identifier of the job

	-o OUT

	The location of the output directory

or

	--param PARAM

	The location of the parameter file

	--model MODEL

	The location of the model file

	--id ID

	The unique identifier of the job

	--out OUT

	The location of the output directory

Optional Input

	-h

	Shows a help message and exists

	-v

	Increase output verbosity. This includes 3 levels, -v, -vv, and -vvv

	--profile

	Print a log file containing the time in seconds and memory use in Mb for main functions

	-g MAP

	The location of the genetic map file

	-a ARRAY

	The location of the array template file, in bed format [http://bedtools.readthedocs.io/en/latest/content/general-usage.html]. The third column is used as the physical positions of the SNP for the pseudo array.

or

	--help

	Shows a help message and exists

	-v

	Increase output verbosity. This includes 3 levels, -v, -vv, and -vvv

	--profile

	Print a log file containing the time in seconds and memory use in Mb for main functions

	--map MAP

	The location of the genetic map file

	--array ARRAY

	The location of the array template file, in bed format [http://bedtools.readthedocs.io/en/latest/content/general-usage.html]. The third column is used as the physical positions of the SNP for the pseudo array.

Additional information on input arguments

ID

This is a unique identifier for the job. It is used in the names of the output files.
For example, the output file with parameter values and summary statistics is named results_{IDid}.txt.

output_dir

This is where all the output goes.
Within the output_dir the directory results will always be created. The results directory contains the results file results_{jobid}.txt with the parameter values and summary statistics.
Additionally, the directories germline_out and sim_data are also created, but will be empty if the germline or pedmap arguments in the model file are not included.

Be careful when running large numbers of jobs (>2000). It is bad practice to run large numbers of jobs and direct all the output to the same directory, because listing the contents of the directory becomes very slow. Instead, we recommend creating directory “buckets”. See section Recommendations for other HTC workflows.

param_file.txt

Examples of param_file.txt can be found in examples.
The param_file.txt must define the parameters of the demographic model and the minimum derived allele frequency to be used to create the pseudo array, if a pseudo array is to be created.

All time parameters must end in _t.

All parameter values should be given in pre-coalescent scaled units.
That is, Ne should be given in units of chromosomes, and time should be given in units of generations.
The code will scale to the appropriate coalescent units for the simulation.

The definition can be hard-coded parameter values, such as:

A = 1000
B = 1000
T1_t = 100

The definition can be a prior, such as:

A = (1e3.0:1e4.0)
B = (1e3.0:1e4.0)
T1_t = (10:500)

Log base 10 can be used for the parameter definitions by using 1eX or 1Ex.
This is recommended when using a prior with a very large range (See ABCtoolbox manual).

If pseudo arrays are to be created, the derived allele frequency must be defined. For example,

A = (1e3.0:1e4.0)
B = (1e3.0:1e4.0)
T1_t = (10:500)
daf = (0.01:0.1)

currently only a range of values is supported for daf. Therefore if you want to hard code a value, use the same value as the min and max of the prior.

model_file.csv

Examples of model_file.csv can be found in examples.

The demographic model, SNP ascertainment model, and additional options are defined in the model_file.csv.
The demographic model defines events in populations’ history, including population divergence, instantanious effective population size changes, exponential growth, gene flow and admixture. We use a coalescent simulation, so models must be defined backwards in time, starting from the present, with each event going back in the past. The SNP ascertainment model defines how to create a pseudo SNP array using a template SNP array, a set of discovery populations and a minor allele frequency cutoff. The SNP ascertainment model should be used when comparing to real SNP array data.

All instances of any argument must start with a dash followed by the corresponding argument parameters,
and value(s).
Each new argument must be a new line.
All variables and values must be separated by commas (white space will be ignored, so it is okay to include spaces).
The model arguments can appear in any order.

All parameters must be called with a name corresponding to its definition in the param file.
This is how parameter values are assigned to the simulation model.
For example,

-macs,./bin/macs,
-length,5000000,
-s,1231414,
-t,2.5e-8,
-r,1e-8,
-h,1e5,
define a sample size of 50 haploid individuals for populations 1 and 2
-I, 2, 50, 50
define the effective population size at present for population 1
-n, 1, A
define the effective population size at present for population 2
-n, 2, B
define a divergence event (join backwards in time) between populations 1 and 2
-ej, T1, 1, 2

Setup simulation arguments

One of the following two flags must be included:

	-macs

	use the original simulator MaCS [https://github.com/gchen98/macs]. This option will stream the MaCS simulation output directly to be read into a python bitarray.

	-macs_file

	read in static output from MaCS. This should only be used for rigorous testing.

Following the -macs and -macs_file flags there should be a path to either the executable or static file in relation to the working directory. For example:

If you are using a virtual environment the path to macs should be

-macs, ./bin/macs

If you are using Docker or Singularity the path to macs should be

-macs, /app/macs

or if you want to use a static file,

-macs_file, tests/test_data/sites1000000.txt

	-length

	The number base pairs you want to simulate. Must be included.

	-s

	random seed.
Must be an integer.
If no input is given, no seed will be used, and everything will be random.
If a seed is provided, reproducible parameters will be picked from the priors.
Using a seed will also cause reproducible simulations with macs.

Demographic simulation arguments

All argument flags are based on macs arguments (see macs and ms manual for more detail).

-t: mutation rate per site per 4N generations

-d: enable debugging messages. No entry will default to allowing debugging messages. This will not work when using macsswig

-h: history. Refers to the number of previous base pairs to retain

-r [r]: recombination rate per site per 4N generations

-c [f lambda]: f = ratio of gene conversion rate to crossover rate. track len(lambda) is mean length of tract in base pairs.
This has not been tested.

-T: Print each local tree in Newick format to standard out. This has not been tested.

-G [alpha]: Assign growth rate alpha across populations where alpha=-log(Np/Nr).

-I [n n_n]: Assign all elements of the migration matrix for n populations.
Values in matrix set to mig_rate/(n-1).
The length of n_n should be equal to n

-m [i,j m]: i, j is associated with a location in the migration matrix
m is assigned to the value at (i, j)

-ma [m_nn]: Assign values to all elements of migration matrix for n populations

-n [i size]: Population i set to size

-g [i alpha]: assigns alpha value as explained in -G to population i

-eG [t alpha]: t is a time value.
alpha behaves the same as in -G

-eg [t i alpha]:
t is a time value.
alpha behaves the same as in -G.
i is a population that alpha is assigned to at time t.

-eM [t m]:
t is a time value.
Assign migration rate m to all elements in migration matrix at
time t

-em [t i,j m_ij]:
t is a time value.
i and j make up point in a population matrix.
assigns migration rate m_ij to the population at i, j at time t

-ema [t n m_nn]:
t is a time value.
Assign migration rates within the migration matrix for n
populations at time t.

-eN [t size]:
t is a time value.
Assigns size to all populations at time t

-en [t i size_i]:
t is a time value.
assigns size_i to population i at time t

-es [t i p]:
t is a time value.
splits population i by p at time t

-ej [t i j]
t is a time value.
joins population i with population j at time t

SNP array ascertainment arguments

If the user would like to create a pseudo array from the simulation, the array template must be included in the command line argument with the flag -a, and four additional arguments must be included in the model_file:

-discovery, followed by the populations (defined by their numbers from -n) that should be used to discover the SNP (e.g. the HapMap populations).
These are the populations that will be used to create the pseudo array.
When calculating summary statistics, summary statistics based on whole genome simulation and pseudo array will be calculated for these populations.

-sample, followed by the populations (defined by their numbers from -n) that are the samples of interest for demographic interest.

-daf, followed by the parameter name for daf.

-random_discovery, followed by True or False.
True will add a random number of individuals to the discovery populations to use as the “panel” to create the pseudo array.
When this option is False, the total number of simulated discovery populations is equal to the number “genotyped” and in the “panel”.

For example:

-macs,./bin/macs,
-length,5000000,
-s,1231414,
-t,2.5e-8,
-r,1e-8,
-h,1e5,
-I, 2, 50, 50
-n, 1, A
-n, 2, B
-ej, T1, 1, 2
-discovery, 1
-sample, 2
-daf, daf
-random_discovery, True

An example of an array template is:

chr22 0 15929526
chr22 0 15991515
chr22 0 16288162
chr22 0 16926611
chr22 0 16990146
chr22 0 17498992
chr22 0 17540297
chr22 0 17728199
chr22 0 17760714
chr22 0 18180154
chr22 0 18217275
chr22 0 18220413

Ordering of time-specific events

When using priors, if some demographic events must happen in a certain order, the order can be specified by adding the order number to the argument.
For example say there are two demographic events, a population split and instantaneous growth, but the instantaneous growth must happen before the population split, we can indicate that in the model file:

-en_1, Tgrowth, 1, A2
-ej_2, Tsplit, 2, 1

Additionally, the same format can be used to indicate that multiple events should happen at the same time.
If there are multiple events that should happen at the same time, the word inst should be used instead of a time parameter after the first definition of the time.
(this will actually cause the times to be just different enough that macs is happy.)
For example, say we wanted growth to occur at the same time as the population split:

-en_1, Tgrowth, 1, A2
-ej_1, inst, 2, 1

In this case, the population split will technically be simulated slightly after the growth.

germline

currently has a bug

The option -germline can be included in the model_file to use GERMLINE [https://github.com/sgusev/GERMLINE] to find shared IBD segments between all simulated individuals from pseudo array.
Does not use the genetic map to run GERMLINE.
Runs GERMLINE as:

bash ./bin/phasing_pipeline/gline.sh ./bin/germline-1-5-1/germline ped_name map_name out_name "-bits 10 -min_m min_m"

If GERMLINE does not run, try rebuilding it on the machine you are trying to run on:

cd ./bin/germline-1-5-1
make clean
make

pedmap

The option -pedmap can be included in the model_file to print a ped and map file of the pseudo array data.

High Throughput Computing

Open Science Grid

	Create an OSG Connect account. https://osgconnect.net/signup

	Join the project SimPrily

	Create an ssh key pair [https://support.opensciencegrid.org/support/solutions/articles/12000027675-generate-ssh-key-pair-and-add-the-public-key-to-your-account]

Log onto Open Science Grid Connect

ssh user-name@login01.osgconnect.net

Clone the entire repository. We only need the pegasus_workflow directory

git clone https://github.com/agladstein/SimPrily.git

Test with interactive Singularity container

Start the Singularity container and run a small test.

[agladstein@login02 ~]$ singularity shell --home $PWD:/srv --pwd /srv /cvmfs/singularity.opensciencegrid.org/agladstein/simprily\:latest
Singularity: Invoking an interactive shell within container...

$ bash
agladstein@login02:~$ export PATH=/usr/local/bin:/usr/bin:/bin
agladstein@login02:~$ python /app/simprily.py examples/eg2/Param_file_eg2.txt examples/eg2/model_file_eg2.csv 2 out_dir

Submit a Pegasus workflow

All components of the Pegasus workflow are located in the directory
pegasus_workflow.

Start the workfow by running submit on the command line from the pegasus_workflow directory.
There are 3 required arguments and 2 optional arguments

./submit -p PARAM -m MODEL -j NUM [-g MAP] [-a ARRAY]

Required

	-p PARAM

	The location of the parameter file

	-m MODEL

	The location of the model file

	-j NUM

	The number of jobs to run. The ID will go from 1 to NUM.

Optional

	-g MAP

	The location of the genetic map file

	-a ARRAY

	The location of the array template file, in bed form

We recommend that all testing be done before submiting workflows to OSG. Therefore we do not include the verbose options. Pegasus provides run information, so we do not include the profile option with the OSG workflow.

Example workflow submissions

e.g. (No pseudo array and no recombination map)

./submit -p ../examples/eg2/param_file_eg2.txt -m ../examples/eg2/model_file_eg2.csv -j 10

e.g. (include pseudo array, but no recombination map)

./submit -p ../examples/eg2/param_file_eg2_asc.txt -m ../examples/eg2/model_file_eg2_asc.csv -j 10 -a ../array_template/ill_650_test.bed

e.g. (recombination map, but no pseudo array)

./submit -p ../examples/eg2/param_file_eg2.txt -m ../examples/eg2/model_file_eg2.csv -j 10 -g ../genetic_map_b37/genetic_map_GRCh37_chr1.txt.macshs

e.g. (include pseudo array, and recombination map)

./submit -p ../examples/eg2/param_file_eg2_asc.txt -m ../examples/eg2/model_file_eg2_asc.csv -j 10 -a ../array_template/ill_650_test.bed -g ../genetic_map_b37/genetic_map_GRCh37_chr1.txt.macshs

Monitoring and Debugging

To find the run times of the executable:

pegasus-statistics -s all

Then, look at Transformation statistics.

How the Pegasus workflow works

submit -> tools/dax-generator -> wrappers/run-sim.sh

submit will run tools/dax-generator, which constructs the workflow. The dax-generator is the main Pegasus file.
The dax-generator creates the HTCondor dag file.
It also tells Pegasus where the local files are and transfers files (from submit host to compute node) so they are available for the job.
It also defines how to handle output files.

wrappers/run-sim.sh is the wrapper that runs in the container. It modifies the environment, and runs SimPrily.

Recommendations for other HTC workflows

coming soon

Calculating summary statistics on real data

Data format

Real data must be in PLINK .tped file with 0’s and 1’s.
Sites in rows, individuals in columns (first 4 columns chr, rsnumber, site_begin, site_end).
The populations must be in the same order as specified in the model file for the simulations.

Put the individuals in the correct order
https://www.cog-genomics.org/plink2/data#indiv_sort

plink --bfile bfile --indiv-sort f sample_order.txt --make-bed --out bfile_ordered

To get in the .tped format from .bed .bim .fam with 0’s and 1’s refer to
https://www.cog-genomics.org/plink2/formats#tped

plink --bfile bfile --recode transpose 01 --output-missing-genotype N --out tfile01

Usage

	real_data_ss.py takes 5 arguments:

	
	model_file

	param_file

	output_dir

	genome_file

	array_file

e.g.

python real_data_ss.py examples/eg1/model_file_eg1.csv examples/eg1/param_file_eg1.txt out_dir ~/data/HapMap_example/test_10_YRI_CEU_CHB.tped ~/data/HapMap_example/test_10_YRI_CEU_CHB_KHV_hg18_ill_650.tped

Tutorial with Docker

	What do you want to simulate? How many simulations?

	Create your model.csv and param.txt input files.

	Perform a small test simulation.

1. Define your simulation

	Draw your model.

	Estimate the required resources.

	Decide where to run your simulations.

2. Create input files

3. Perform test simulation

a. Pull Docker image

Pull the latest SimPrily Docker image:

docker pull agladstein/simprily

Once you have successfully pulled the image you will see something like this:

Using default tag: latest
latest: Pulling from agladstein/simprily
f49cf87b52c1: Pull complete
7b491c575b06: Pull complete
b313b08bab3b: Pull complete
51d6678c3f0e: Pull complete
09f35bd58db2: Pull complete
f7e0c30e74c6: Pull complete
c308c099d654: Pull complete
339478b61728: Pull complete
d16221c2883e: Pull complete
df211aed0ee8: Pull complete
94afb574a896: Pull complete
b253919783b5: Pull complete
45cb233ca3a5: Pull complete
Digest: sha256:1de7a99a23264caa22143db2a63794fa34541ccaf9155b9fb50488b5949a9d7d
Status: Downloaded newer image for agladstein/simprily:latest

Next, double check the images you’ve pulled:

docker image ls

You should see something like this:

REPOSITORY TAG IMAGE ID CREATED SIZE
agladstein/simprily latest 1d3fbe956b00 5 hours ago 938MB

b. Run SimPrily

Run one small example with the Docker container

docker run -t -i --mount type=bind,src=/home/agladstein/src/SimPrily,dst=/app agladstein/simprily python /app/simprily.py -p examples/eg1/param_file_eg1.txt -m examples/eg1/model_file_eg1.csv -g genetic_map_b37/genetic_map_GRCh37_chr1.txt.macshs -a array_template/ill_650_test.bed -i 1 -o output_dir -v

You should see something like this:

debug-1: Debug on: Level 1
JOB 1
debug-1: name total panel genotyped
debug-1: A 140 0 140
debug-1: B 20 0 20
debug-1: total samples: 160
debug-1: Perform simulation and get sequences
debug-1: Number of sites in simulation: 10309
debug-1: Calculating summary statistics

#########################
PROGRAM COMPLETED
#########################

Then, you should see a new directory created /home/agladstein/src/SimPrily/output_dir.
In that directory, you should see the directories

sim_data
germline_out
results

and the directory results should have the file results_1.txt, which should look something like this:

A AN_t B AB_t AN SegS_A_CGI Sing_A_CGI Dupl_A_CGI TajD_A_CGI SegS_B_CGISing_B_CGI Dupl_B_CGI TajD_B_CGI FST_AB_CGI
29380.6397673 1615.50194862 42155.6351482 2546.95287896 10000.0 9795 3880 1283 -1.30415802172 4360 1690 674 -0.488311472745 0.00115531480069

4. Perform HTC simulations

For Developers

Containers

Docker

Notes on installing Docker, creating a Docker image, and running a Docker container.
The following instructions for Docker require sudo privaliges.
Check the Docker documentation for what to do if you do not have sudo.

Installing Docker

Check that Docker is installed:

sudo docker run hello-world

Quick and easy install script provided by Docker:

curl -sSL https://get.docker.com/ | sh

OR

If not on Linux, you can use Vagrant.

vagrant up
vagrant ssh

Then, continue with Linux steps.

See https://docs.docker.com/engine/installation/linux/docker-ce/ubuntu/#install-docker-ce

For Mac or Windows see Docker documentation.

Dockerize

	Create Dockerfile

	Build Docker image

	Push Docker image to Docker Hub

1. Create Dockerfile
In the directory with the necessary code and requirements.txt

Dockerfile [https://github.com/agladstein/SimPrily/blob/master/Dockerfile]

Use an official Python runtime as a parent image
FROM python:2.7

Set the working directory to /app
WORKDIR /app

Copy the current directory contents into the container at /app
ADD . /app

Install any needed packages specified in requirements.txt
RUN pip install -r requirements.txt

Create directory for OSG
RUN mkdir -p /cvmfs

Make executable
RUN chmod +x /app/simprily.py

Make port 80 available to the world outside this container
EXPOSE 80

Define entry point
#ENTRYPOINT ["python", "/app/simprily.py"]

See https://docs.docker.com/engine/reference/builder/

2. Build Docker imiage

sudo docker build -t agladstein/simprily .

3. Push Docker image to Docker Hub

Must first login to Docker Hub

sudo docker login

sudo docker push agladstein/simprily

Run program with Docker container

Pull image:

sudo docker pull agladstein/simprily

Run program:

docker run -t -i --mount type=bind,src=/home/agladstein/docker_test/SimPrily,dst=/app agladstein/simprily_autobuild:version1 python /app/simprily.py -p examples/eg1/param_file_eg1.txt -m examples/eg1/model_file_eg1.csv -g genetic_map_b37/genetic_map_GRCh37_chr1.txt.macshs -a array_template/ill_650_test.bed -i 1 -o output_dir -v

try running with port ``-p``

or Run Docker container interactively to poke around

docker run --rm -it --entrypoint=/bin/bash agladstein/simprily_autobuild:version1

Cheat sheet

Some useful commands

docker build -t friendlyname . # Create image using this directory's Dockerfile
docker run -p 4000:80 friendlyname # Run "friendlyname" mapping port 4000 to 80
docker run -d -p 4000:80 friendlyname # Same thing, but in detached mode
docker container ls # List all running containers
docker container ls -a # List all containers, even those not running
docker container stop <hash> # Gracefully stop the specified container
docker container kill <hash> # Force shutdown of the specified container
docker container rm <hash> # Remove specified container from this machine
docker container rm $(docker container ls -a -q) # Remove all containers
docker image ls -a # List all images on this machine
docker image rm <image id> # Remove specified image from this machine
docker image rm $(docker image ls -a -q) # Remove all images from this machine
docker rmi $(docker images -q) # Remove all containers from this machine
docker login # Log in this CLI session using your Docker credentials
docker tag <image> username/repository:tag # Tag <image> for upload to registry
docker push username/repository:tag # Upload tagged image to registry
docker run username/repository:tag # Run image from a registry

Resources

https://docs.docker.com/get-started/
https://github.com/wsargent/docker-cheat-sheet
https://docs.docker.com/engine/installation/linux/docker-ce/ubuntu/#install-docker-ce
https://docs.docker.com/engine/reference/builder/
https://docs.docker.com/engine/reference/commandline/run/#add-bind-mounts-or-volumes-using-the-mount-flag
http://codeblog.dotsandbrackets.com/persistent-data-docker-volumes/

Singularity

These are preliminary notes, not specific to a SimPrily Singularity container.

Installing Singularity

To install Singularity:

git clone https://github.com/singularityware/singularity.git
cd singularity
sudo apt-get install libtool
sudo apt-get install autotools-dev
sudo apt-get install automake
./autogen.sh
./configure --prefix=/usr/local
make
sudo make install

Create empty image

To create an empty Singularity image:

create --size 2048 simprily-little.img

Make or pull a container

1. Make container by dumping docker layers into empty image:

import simprily-little.img docker://agladstein/simprily-little

or

2. Pull container

singularity pull docker://centos:latest

or

3. Bootstrap

Create Singularity specification file.

For example:

Bootstrap: docker
From: ubuntu:latest

%runscript

 echo "I can put here whatever I want to happen when the user runs my container!"
 exec echo "Hello Monsoir Meatball" "$@" #The $@ is where arguments go

%post

 echo "Here we are installing software and other dependencies for the container!"
 apt-get update
 apt-get install -y git

Then build image from Singularity file:

sudo singularity bootstrap analysis.img Singularity

Run container

1. from Singularity Hub

singularity run shub://vsoch/hello-world

or

2. from local container with input arguement

singularity run analysis.img Ariella

Shell into a container

singularity shell centos7.img

Resources

	http://singularity.lbl.gov/quickstart

	http://singularity.lbl.gov/singularity-tutorial

	https://singularity-hub.org/faq

Testing

The shell script autoTesting.sh is included for quick automated testing of included examples.

It is run as:

./autoTesting.sh PYTHON [EXAMPLE_INT]

Where,

PYTHON is the python to use

EXAMPLE_INT is the specific example number to test (optional). If it is not specified, it will test all of the examples.

Creating Documentation

	Install Sphinx:

pip install Sphinx

	To edit the Read The Docs, edit the Sphinx .rst files in SimPrily/docs.

	Build the html from restructured text:

~/simprily_env/bin/sphinx-build -b html source build

Resources

	http://www.sphinx-doc.org/en/stable/tutorial.html

	https://github.com/ralsina/rst-cheatsheet/blob/master/rst-cheatsheet.rst

	https://thomas-cokelaer.info/tutorials/sphinx/rest_syntax.html#headings

	http://rest-sphinx-memo.readthedocs.io/en/latest/ReST.html

Other Notes

	If you use import a new Python package make sure you add it to the requirements.txt file then create the requirements.in. This will insure that the package installed in the virtual environment and Docker image.

pip-compile --output-file requirements.txt requirements.in

Index

 _static/comment-close.png

_static/comment.png

_static/comment-bright.png

_static/file.png

_static/down-pressed.png

_static/down.png

_static/minus.png

_static/plus.png

_static/ajax-loader.gif

nav.xhtml

 Table of Contents

 		
 Welcome to SimPrily’s documentation!

 		
 Introduction

 		
 Install and Environment Set up

 		
 Container

 		
 Docker

 		
 Singularity

 		
 Virtual environment

 		
 Linux OS

 		
 Virtual Machine for non-Linux

 		
 Local installation

 		
 Usage

 		
 How to run with a Container

 		
 Docker

 		
 Singularity

 		
 Required Input

 		
 Optional Input

 		
 Additional information on input arguments

 		
 ID

 		
 output_dir

 		
 param_file.txt

 		
 model_file.csv

 		
 High Throughput Computing

 		
 Open Science Grid

 		
 Test with interactive Singularity container

 		
 Submit a Pegasus workflow

 		
 Monitoring and Debugging

 		
 How the Pegasus workflow works

 		
 Recommendations for other HTC workflows

 		
 Calculating summary statistics on real data

 		
 Data format

 		
 Usage

 		
 Tutorial with Docker

 		
 1. Define your simulation

 		
 2. Create input files

 		
 3. Perform test simulation

 		
 a. Pull Docker image

 		
 b. Run SimPrily

 		
 4. Perform HTC simulations

 		
 For Developers

 		
 Containers

 		
 Docker

 		
 Singularity

 		
 Testing

 		
 Creating Documentation

 		
 Resources

 		
 Other Notes

_static/up-pressed.png

_static/up.png

